All files / components/shared/three/anatomy BoneRenderer.tsx

94.44% Statements 34/36
78.72% Branches 37/47
100% Functions 6/6
97.14% Lines 34/35

Press n or j to go to the next uncovered block, b, p or k for the previous block.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482                                                                  9x                               9x         142x 142x             142x 142x             142x 142x             142x       142x 142x                                                                                                                                                                                                                                                                                     9x                                   3976x 1988x   1988x     1988x 1988x     1917x 1917x 1917x   1917x 1917x   1917x           1917x       1917x       1988x     3976x                                                                                                                                                     3834x                                                                                                                                                           9x                                   142x 142x 142x           142x       142x                                                
/**
 * BoneRenderer component for visualizing skeletal hierarchy
 *
 * Renders bone hierarchy as connected capsule meshes with proper transformations.
 * Recursively renders parent-child bone relationships for complete skeleton visualization.
 *
 * @module components/three/BoneRenderer
 * @category 3D Components
 * @korean 뼈렌더러컴포넌트
 */
 
import React, { useMemo } from "react";
import * as THREE from "three";
import { KOREAN_COLORS } from "../../../../types/constants";
import type {
  FacialDamageState,
  FacialExpression,
} from "../../../../types/facial";
import { DEFAULT_FACIAL_DAMAGE } from "../../../../types/facial";
import type { HandAnimationState } from "../../../../types/hand-animation";
import type { Bone, SkeletalRig } from "../../../../types/skeletal";
import { BoneMuscles } from "./BoneAttachedMuscles";
import Face3D from "./Face3D";
import Hand3D from "./Hand3D";
 
/**
 * Visual amplification factor for bone thickness.
 *
 * Amplifies the visual difference between lean and muscular archetypes
 * for more noticeable body type distinction.
 *
 * @korean 뼈두께시각적증폭계수
 */
const THICKNESS_AMPLIFICATION_FACTOR = 2.0;
 
/**
 * Calculate bone thickness multiplier based on physical attributes
 *
 * Maps muscle mass and fat mass to bone thickness scaling for visual appearance.
 * Higher muscle mass = thicker bones (more muscular skeleton).
 * Higher fat mass = slightly thicker bones (more padding).
 * Differences are amplified for more noticeable archetype distinction.
 *
 * @param muscleMass - Muscle mass in kilograms (typical: 32-42kg)
 * @param fatMass - Fat mass in kilograms (typical: 9-20kg)
 * @returns Thickness multiplier for bone radius (amplified range: ~0.86-1.28)
 *
 * @korean 뼈두께계산
 */
const calculateBoneThicknessMultiplier = (
  muscleMass: number,
  fatMass: number
): number => {
  // Reference: 35kg muscle mass, 12kg fat mass → 1.0x thickness
  const referenceMuscle = 35;
  const referenceFat = 12;
 
  // Muscle contribution (70% of thickness variation)
  // Example calculations:
  // - 32kg muscle (Amsalja) → sqrt(32/35) * 0.7 ≈ 0.67 contribution
  // - 35kg muscle (reference) → sqrt(35/35) * 0.7 = 0.70 contribution
  // - 42kg muscle (Jojik) → sqrt(42/35) * 0.7 ≈ 0.77 contribution
  const muscleRatio = muscleMass / referenceMuscle;
  const muscleContribution = Math.sqrt(muscleRatio) * 0.7;
 
  // Fat contribution (30% of thickness variation)
  // Example calculations:
  // - 9kg fat (Amsalja) → sqrt(9/12) * 0.3 ≈ 0.26 contribution
  // - 12kg fat (reference) → sqrt(12/12) * 0.3 = 0.30 contribution
  // - 18kg fat (Jojik) → sqrt(18/12) * 0.3 ≈ 0.37 contribution
  const fatRatio = fatMass / referenceFat;
  const fatContribution = Math.sqrt(fatRatio) * 0.3;
 
  // Combined raw thickness multiplier
  // For archetype defaults:
  // - Amsalja (32kg muscle, 9kg fat): 0.67 + 0.26 ≈ 0.93x raw thickness
  // - Musa (38kg muscle, 12kg fat): 0.73 + 0.30 ≈ 1.03x raw thickness
  // - Jojik (42kg muscle, 18kg fat): 0.77 + 0.37 ≈ 1.14x raw thickness
  const rawMultiplier = muscleContribution + fatContribution;
 
  // Apply visual amplification for more noticeable differences
  // Amplified range: ~0.86x (lean Amsalja) to ~1.28x (bulky Jojik)
  const deviation = rawMultiplier - 1.0;
  return 1.0 + deviation * THICKNESS_AMPLIFICATION_FACTOR;
};
 
/**
 * Props for BoneRenderer component
 *
 * @public
 * @category Component Props
 * @korean 뼈렌더러속성
 */
export interface BoneRendererProps {
  /**
   * Skeletal rig to render
   * @korean 골격
   */
  readonly rig: SkeletalRig;
 
  /**
   * Bone color
   * @korean 뼈색상
   */
  readonly color?: number;
 
  /**
   * Whether to show bones (for debugging)
   * @korean 뼈표시여부
   */
  readonly showBones?: boolean;
 
  /**
   * Render mode: 'solid' for solid meshes, 'debug' for wireframe
   * @korean 렌더모드
   */
  readonly renderMode?: "solid" | "debug";
 
  /**
   * Left hand animation state
   * @korean 왼손애니메이션상태
   */
  readonly leftHandState?: HandAnimationState;
 
  /**
   * Right hand animation state
   * @korean 오른손애니메이션상태
   */
  readonly rightHandState?: HandAnimationState;
 
  /**
   * Distance from camera for LOD
   * @korean 카메라거리
   */
  readonly cameraDistance?: number;
 
  /**
   * Current facial expression
   * @korean 얼굴표정
   */
  readonly facialExpression?: FacialExpression;
 
  /**
   * Facial damage state
   * @korean 얼굴손상
   */
  readonly facialDamage?: FacialDamageState;
 
  /**
   * Opponent position for eye tracking
   * @korean 상대위치
   */
  readonly opponentPosition?: THREE.Vector3;
 
  /**
   * Enable facial expressions rendering
   * @korean 얼굴표정렌더링
   */
  readonly enableFacialExpressions?: boolean;
 
  /**
   * Enable eye tracking
   * @korean 눈추적활성화
   */
  readonly enableEyeTracking?: boolean;
 
  /**
   * Physical attributes for bone thickness scaling
   * @korean 신체속성
   */
  readonly physicalAttributes?: {
    readonly muscleMass: number;
    readonly fatMass: number;
  };
 
  /**
   * Muscle tension states for bone-attached muscles
   * Map of muscle group name to tension level (0-1)
   * @korean 근육상태들
   */
  readonly muscleStates?: Map<string, number>;
 
  /**
   * Whether player is exhausted (triggers muscle shaking)
   * @korean 피로여부
   */
  readonly isExhausted?: boolean;
}
 
/**
 * Single bone renderer with transformation
 *
 * Renders a single bone as a capsule connecting to its parent.
 *
 * @param bone - Bone to render
 * @param color - Bone color
 * @param renderMode - Render mode
 * @param leftHandState - Left hand animation state
 * @param rightHandState - Right hand animation state
 * @param cameraDistance - Distance from camera
 * @param boneThicknessMultiplier - Thickness multiplier for bone radius
 * @korean 단일뼈렌더러
 */
const SingleBone: React.FC<{
  readonly bone: Bone;
  readonly color: number;
  readonly renderMode: "solid" | "debug";
  readonly leftHandState?: HandAnimationState;
  readonly rightHandState?: HandAnimationState;
  readonly cameraDistance?: number;
  readonly facialExpression?: FacialExpression;
  readonly facialDamage?: FacialDamageState;
  readonly opponentPosition?: THREE.Vector3;
  readonly enableFacialExpressions?: boolean;
  readonly enableEyeTracking?: boolean;
  readonly boneThicknessMultiplier?: number;
  readonly muscleStates?: Map<string, number>;
  readonly isExhausted?: boolean;
  readonly physicalAttributes?: {
    readonly muscleMass: number;
    readonly fatMass: number;
  };
}> = ({
  bone,
  color,
  renderMode,
  leftHandState,
  rightHandState,
  cameraDistance = 10,
  facialExpression,
  facialDamage,
  opponentPosition,
  enableFacialExpressions = false,
  enableEyeTracking = true,
  boneThicknessMultiplier = 1.0,
  muscleStates,
  isExhausted = false,
  physicalAttributes,
}) => {
  // Calculate bone direction and length
  const boneTransform = useMemo(() => {
    const length = bone.length;
    // CapsuleGeometry in Three.js is aligned along the Y-axis by default (0, 1, 0)
    const capsuleDefaultDirection = new THREE.Vector3(0, 1, 0);
 
    // Calculate rotation to align with bone direction if parent exists
    let rotation = new THREE.Euler(0, 0, 0);
    if (bone.parent) {
      // Use this bone's local position (parent → child vector) and normalize to get the direction
      // Extract coordinates and manually normalize to avoid issues with Vector3 method availability
      const x = bone.position.x ?? 0;
      const y = bone.position.y ?? 0;
      const z = bone.position.z ?? 0;
      
      const positionLength = Math.sqrt(x * x + y * y + z * z);
      Eif (positionLength > 0.001) {
        // Manually normalize to get a stable direction vector
        const target = new THREE.Vector3(
          x / positionLength,
          y / positionLength,
          z / positionLength
        );
        // Calculate quaternion rotation from capsule's default Y-axis to target direction
        const quaternion = new THREE.Quaternion().setFromUnitVectors(
          capsuleDefaultDirection,
          target
        );
        rotation = new THREE.Euler().setFromQuaternion(quaternion);
      }
    }
 
    return { length, rotation };
  }, [bone]);
 
  return (
    <group
      position={bone.position.toArray()}
      rotation={[bone.rotation.x, bone.rotation.y, bone.rotation.z]}
      scale={bone.scale.toArray()}
      data-testid={`bone-${bone.name}`}
    >
      {/* Bone capsule connecting to parent */}
      {renderMode === "solid" ? (
        <mesh
          rotation={[
            boneTransform.rotation.x,
            boneTransform.rotation.y,
            boneTransform.rotation.z,
          ]}
          castShadow
          receiveShadow
        >
          <capsuleGeometry
            args={[
              boneTransform.length * 0.1 * boneThicknessMultiplier, // Radius scaled by thickness
              boneTransform.length, // Length unchanged
              4,
              8,
            ]}
          />
          <meshStandardMaterial color={color} metalness={0.3} roughness={0.7} />
        </mesh>
      ) : (
        <mesh
          rotation={[
            boneTransform.rotation.x,
            boneTransform.rotation.y,
            boneTransform.rotation.z,
          ]}
        >
          <capsuleGeometry
            args={[
              boneTransform.length * 0.1 * boneThicknessMultiplier, // Radius scaled by thickness
              boneTransform.length, // Length unchanged
              4,
              8,
            ]}
          />
          <meshBasicMaterial
            color={color}
            wireframe={true}
            transparent={true}
            opacity={0.5}
          />
        </mesh>
      )}
 
      {/* Joint sphere at bone position */}
      {renderMode === "debug" && (
        <mesh>
          <sphereGeometry
            args={[boneTransform.length * 0.15 * boneThicknessMultiplier, 8, 8]}
          />
          <meshBasicMaterial color={KOREAN_COLORS.PRIMARY_CYAN} />
        </mesh>
      )}
 
      {/* Render bone-attached muscles */}
      {renderMode === "solid" && muscleStates && (
        <BoneMuscles
          boneName={bone.name}
          muscleStates={muscleStates}
          isExhausted={isExhausted}
          physicalAttributes={physicalAttributes}
        />
      )}
 
      {/* Render children recursively */}
      {bone.children.map((childBone) => (
        <SingleBone
          key={childBone.name}
          bone={childBone}
          color={color}
          renderMode={renderMode}
          leftHandState={leftHandState}
          rightHandState={rightHandState}
          cameraDistance={cameraDistance}
          facialExpression={facialExpression}
          facialDamage={facialDamage}
          opponentPosition={opponentPosition}
          enableFacialExpressions={enableFacialExpressions}
          enableEyeTracking={enableEyeTracking}
          boneThicknessMultiplier={boneThicknessMultiplier}
          muscleStates={muscleStates}
          isExhausted={isExhausted}
          physicalAttributes={physicalAttributes}
        />
      ))}
 
      {/* Add hands at hand bones with animation state */}
      {bone.name === "hand_L" && leftHandState && (
        <Hand3D
          side="left"
          pose={leftHandState.currentPose}
          fingerCurl={leftHandState.currentFingerCurl}
          distanceFromCamera={cameraDistance}
          wristRotation={leftHandState.currentWristRotation}
          isHighlighted={leftHandState.isHighlighted}
          highlightMode={leftHandState.highlightMode}
          skinColor={color}
          scale={1.0}
        />
      )}
      {bone.name === "hand_R" && rightHandState && (
        <Hand3D
          side="right"
          pose={rightHandState.currentPose}
          fingerCurl={rightHandState.currentFingerCurl}
          distanceFromCamera={cameraDistance}
          wristRotation={rightHandState.currentWristRotation}
          isHighlighted={rightHandState.isHighlighted}
          highlightMode={rightHandState.highlightMode}
          skinColor={color}
          scale={1.0}
        />
      )}
 
      {/* Add facial features at head bone */}
      {bone.name === "head" && enableFacialExpressions && facialExpression && (
        <Face3D
          expression={facialExpression}
          damage={facialDamage ?? DEFAULT_FACIAL_DAMAGE}
          opponentPosition={opponentPosition ?? new THREE.Vector3(5, 2, 0)}
          headRotation={bone.rotation.clone()}
          enableEyeTracking={enableEyeTracking}
          enableDamageVisuals={true}
          isMobile={cameraDistance > 15}
          skinColor={color}
        />
      )}
    </group>
  );
};
 
/**
 * BoneRenderer component
 *
 * Renders complete skeletal rig with recursive bone hierarchy.
 *
 * @example
 * ```tsx
 * const rig = createHumanoidRig();
 * <BoneRenderer rig={rig} color={0xFF6B6B} renderMode="solid" />
 * ```
 *
 * @korean 뼈렌더러컴포넌트
 */
export const BoneRenderer: React.FC<BoneRendererProps> = ({
  rig,
  color = KOREAN_COLORS.ACCENT_RED,
  showBones = true,
  renderMode = "solid",
  leftHandState,
  rightHandState,
  cameraDistance = 10,
  facialExpression,
  facialDamage,
  opponentPosition,
  enableFacialExpressions = false, // Default false to avoid breaking existing tests
  enableEyeTracking = true,
  physicalAttributes,
  muscleStates,
  isExhausted = false,
}) => {
  // Calculate bone thickness multiplier from physical attributes
  const boneThicknessMultiplier = useMemo(() => {
    Iif (!physicalAttributes) return 1.0;
    return calculateBoneThicknessMultiplier(
      physicalAttributes.muscleMass,
      physicalAttributes.fatMass
    );
  }, [physicalAttributes]);
 
  Iif (!showBones) {
    return null;
  }
 
  return (
    <group data-testid="bone-renderer">
      <SingleBone
        bone={rig.root}
        color={color}
        renderMode={renderMode}
        leftHandState={leftHandState}
        rightHandState={rightHandState}
        cameraDistance={cameraDistance}
        facialExpression={facialExpression}
        facialDamage={facialDamage}
        opponentPosition={opponentPosition}
        enableFacialExpressions={enableFacialExpressions}
        enableEyeTracking={enableEyeTracking}
        boneThicknessMultiplier={boneThicknessMultiplier}
        muscleStates={muscleStates}
        isExhausted={isExhausted}
        physicalAttributes={physicalAttributes}
      />
    </group>
  );
};
 
export default BoneRenderer;